RoboticsLaajuus (4 cr)
Code: 8A00CK76
Objective
Upon completion of the course, students will:
- be knowledgeable of various types of robots
- will be capable of inspecting robots and know how to use robots in factory automation and other areas where robotics are used.
- understand the structure, properties, co-ordinates of robots, as well as the peripheral devices used in robots.
- be competent in handling and programming industrial-, collaborative- and mobile robots using online and offline methods of programming.
- be competent in designing and selecting robots and peripheral devices for the automatic handling of products.
Content
- Types of robots
- Mechanical structure of industrial robots
- Control systems, properties, coordinates and peripheral devices
- Handling an ABB-, Fanuc- and Yaskawa industrial robots, online and offline programming
- Features of collaborative robotics and programming of Universal Robots collaborative robots
- Mobile robotics applications and programming with Omron mobile robot
- Application of sensor technology and artificial intelligence in robotics. Application of machine vision in robotics.
Qualifications
No previous studies are required
Assessment criteria, satisfactory (1)
Rating 1 Students master the learning outcomes satisfactorily. The student knows the structure, features, coordinate systems, accessories used in robots. In addition, he/she knows how to use and run programs.
Assessment criteria, good (3)
Rating 3 Students master the learning outcomes as well. The student knows the structure, features, coordinate systems, accessories used in robots. In addition, he/she knows how to use and run programs. The student is able to make a program for an industrial robot and test it.
Assessment criteria, excellent (5)
Rating 5 Students master the learning outcomes to be commended. The student knows the structure, features, coordinate systems, accessories used in robots. In addition, he/she knows how to use and run programs. The student is able to make a program for an industrial robot and test it. The student is able to apply actuators that can be connected to a robot and is able to utilize machine vision.
Materials
Lecture material, Lecture demonstrations, Assignments, Product and programming manuals,
Risto Kuivanen: Robotiikka, Suomen Robottiyhdistys Ry. (Robotics)
Further information
The issues of automation technology are internationally similar.
Enrollment
22.04.2024 - 09.10.2024
Timing
21.10.2024 - 18.12.2024
Credits
4 op
Teaching languages
- Finnish
- English
Degree programmes
- Bachelor of Engineering, Automation Engineering
Teachers
- Jarkko Pakkanen
Student groups
-
AUTE22KADegree Programme in Automation Engineering, Full-time studies
Objective
Upon completion of the course, students will:
- be knowledgeable of various types of robots
- will be capable of inspecting robots and know how to use robots in factory automation and other areas where robotics are used.
- understand the structure, properties, co-ordinates of robots, as well as the peripheral devices used in robots.
- be competent in handling and programming industrial-, collaborative- and mobile robots using online and offline methods of programming.
- be competent in designing and selecting robots and peripheral devices for the automatic handling of products.
Content
- Types of robots
- Mechanical structure of industrial robots
- Control systems, properties, coordinates and peripheral devices
- Handling an ABB-, Fanuc- and Yaskawa industrial robots, online and offline programming
- Features of collaborative robotics and programming of Universal Robots collaborative robots
- Mobile robotics applications and programming with Omron mobile robot
- Application of sensor technology and artificial intelligence in robotics. Application of machine vision in robotics.
Materials
Lecture material, Lecture demonstrations, Assignments, Product and programming manuals,
Book: Teollisuuden robotiikka.: Suomen Robotiikkayhdistys ry, 2023. (in Finnish)
Teaching methods
Lectures, robot programming exercises in simulaltion environment, laboratory assignments with ABB, Fanuc, Yaskawa, Omron (mobile) and Universal robots.
Student workload
A total of 100 hours studying, which includes 20 hours of classroom education and 20 hours of laboratory assignments.
Evaluation scale
1-5
Assessment criteria, satisfactory (1)
Rating 1 Students master the learning outcomes satisfactorily. The student knows the structure, features, coordinate systems, accessories used in robots. In addition, he/she knows how to use and run programs.
Assessment criteria, good (3)
Rating 3 Students master the learning outcomes as well. The student knows the structure, features, coordinate systems, accessories used in robots. In addition, he/she knows how to use and run programs. The student is able to make a program for an industrial robot and test it.
Assessment criteria, excellent (5)
Rating 5 Students master the learning outcomes to be commended. The student knows the structure, features, coordinate systems, accessories used in robots. In addition, he/she knows how to use and run programs. The student is able to make a program for an industrial robot and test it. The student is able to apply actuators that can be connected to a robot and is able to utilize machine vision.
Assessment methods and criteria
Written examination (50%) and robot programming examination (50%).
The course grade scales between 1-5.
Assessment criteria, good (3)
The student has completed the assignments/sections assigned approvingly. The student knows and mastered to a satisfactory degree the basic concepts and methods associated with the subject.
Assessment criteria, excellent (5)
The student has completed the assignments/sections and actively participated in the course. Students are familiar with the basic concepts and methods involved and are able to apply them when solving normal questions. the student is able to combine what he/she has learned with his previous experience in the subject matter.
Assessment criteria, approved/failed
The student has completed the assignments/sections and actively participated in the course. Students are familiar with the basic concepts and methods involved and are able to apply them when solving normal questions. The student has demonstrated the ability to create new meanings and ideas within the framework of the subject, applying what he/she has previously learned.
Qualifications
No previous studies are required
Further information
The issues of automation technology are internationally similar.
Enrollment
22.04.2024 - 09.10.2024
Timing
21.10.2024 - 18.12.2024
Credits
4 op
Teaching languages
- Finnish
- English
Degree programmes
- Bachelor of Engineering, Automation Engineering
Teachers
- Jarkko Pakkanen
Student groups
-
AUTE22SADegree Programme in Automation Engineering, Full-time studies
Objective
Upon completion of the course, students will:
- be knowledgeable of various types of robots
- will be capable of inspecting robots and know how to use robots in factory automation and other areas where robotics are used.
- understand the structure, properties, co-ordinates of robots, as well as the peripheral devices used in robots.
- be competent in handling and programming industrial-, collaborative- and mobile robots using online and offline methods of programming.
- be competent in designing and selecting robots and peripheral devices for the automatic handling of products.
Content
- Types of robots
- Mechanical structure of industrial robots
- Control systems, properties, coordinates and peripheral devices
- Handling an ABB-, Fanuc- and Yaskawa industrial robots, online and offline programming
- Features of collaborative robotics and programming of Universal Robots collaborative robots
- Mobile robotics applications and programming with Omron mobile robot
- Application of sensor technology and artificial intelligence in robotics. Application of machine vision in robotics.
Materials
Lecture material, Lecture demonstrations, Assignments, Product and programming manuals,
Book: Teollisuuden robotiikka.: Suomen Robotiikkayhdistys ry, 2023. (in Finnish)
Teaching methods
Lectures, robot programming exercises in simulaltion environment, laboratory assignments with ABB, Fanuc, Yaskawa, Omron (mobile) and Universal robots.
Student workload
A total of 100 hours studying, which includes 20 hours of classroom education and 20 hours of laboratory assignments.
Evaluation scale
1-5
Assessment criteria, satisfactory (1)
Rating 1 Students master the learning outcomes satisfactorily. The student knows the structure, features, coordinate systems, accessories used in robots. In addition, he/she knows how to use and run programs.
Assessment criteria, good (3)
Rating 3 Students master the learning outcomes as well. The student knows the structure, features, coordinate systems, accessories used in robots. In addition, he/she knows how to use and run programs. The student is able to make a program for an industrial robot and test it.
Assessment criteria, excellent (5)
Rating 5 Students master the learning outcomes to be commended. The student knows the structure, features, coordinate systems, accessories used in robots. In addition, he/she knows how to use and run programs. The student is able to make a program for an industrial robot and test it. The student is able to apply actuators that can be connected to a robot and is able to utilize machine vision.
Assessment methods and criteria
Written examination (50%) and robot programming examination (50%).
The course grade scales between 1-5.
Assessment criteria, good (3)
The student has completed the assignments/sections assigned approvingly. The student knows and mastered to a satisfactory degree the basic concepts and methods associated with the subject.
Assessment criteria, excellent (5)
The student has completed the assignments/sections and actively participated in the course. Students are familiar with the basic concepts and methods involved and are able to apply them when solving normal questions. the student is able to combine what he/she has learned with his previous experience in the subject matter.
Assessment criteria, approved/failed
The student has completed the assignments/sections and actively participated in the course. Students are familiar with the basic concepts and methods involved and are able to apply them when solving normal questions. The student has demonstrated the ability to create new meanings and ideas within the framework of the subject, applying what he/she has previously learned.
Qualifications
No previous studies are required
Further information
The issues of automation technology are internationally similar.
Enrollment
17.04.2023 - 11.10.2023
Timing
04.12.2023 - 25.02.2024
Credits
4 op
Teaching languages
- Finnish
- English
Degree programmes
- Bachelor of Engineering, Automation Engineering
Teachers
- Jarkko Pakkanen
Student groups
-
MAUTE21
Objective
Upon completion of the course, students will:
- be knowledgeable of various types of robots
- will be capable of inspecting robots and know how to use robots in factory automation and other areas where robotics are used.
- understand the structure, properties, co-ordinates of robots, as well as the peripheral devices used in robots.
- be competent in handling and programming industrial-, collaborative- and mobile robots using online and offline methods of programming.
- be competent in designing and selecting robots and peripheral devices for the automatic handling of products.
Content
- Types of robots
- Mechanical structure of industrial robots
- Control systems, properties, coordinates and peripheral devices
- Handling an ABB-, Fanuc- and Yaskawa industrial robots, online and offline programming
- Features of collaborative robotics and programming of Universal Robots collaborative robots
- Mobile robotics applications and programming with Omron mobile robot
- Application of sensor technology and artificial intelligence in robotics. Application of machine vision in robotics.
Materials
Lecture material, Lecture demonstrations, Assignments, Product and programming manuals,
Risto Kuivanen: Robotiikka, Suomen Robottiyhdistys Ry. (Robotics)
Evaluation scale
1-5
Assessment criteria, satisfactory (1)
Rating 1 Students master the learning outcomes satisfactorily. The student knows the structure, features, coordinate systems, accessories used in robots. In addition, he/she knows how to use and run programs.
Assessment criteria, good (3)
Rating 3 Students master the learning outcomes as well. The student knows the structure, features, coordinate systems, accessories used in robots. In addition, he/she knows how to use and run programs. The student is able to make a program for an industrial robot and test it.
Assessment criteria, excellent (5)
Rating 5 Students master the learning outcomes to be commended. The student knows the structure, features, coordinate systems, accessories used in robots. In addition, he/she knows how to use and run programs. The student is able to make a program for an industrial robot and test it. The student is able to apply actuators that can be connected to a robot and is able to utilize machine vision.
Qualifications
No previous studies are required
Further information
The issues of automation technology are internationally similar.
Enrollment
17.04.2023 - 11.10.2023
Timing
23.10.2023 - 17.12.2023
Credits
4 op
Teaching languages
- Finnish
- English
Degree programmes
- Bachelor of Engineering, Automation Engineering
Teachers
- Jarkko Pakkanen
Student groups
-
AUTE21SA
Objective
Upon completion of the course, students will:
- be knowledgeable of various types of robots
- will be capable of inspecting robots and know how to use robots in factory automation and other areas where robotics are used.
- understand the structure, properties, co-ordinates of robots, as well as the peripheral devices used in robots.
- be competent in handling and programming industrial-, collaborative- and mobile robots using online and offline methods of programming.
- be competent in designing and selecting robots and peripheral devices for the automatic handling of products.
Content
- Types of robots
- Mechanical structure of industrial robots
- Control systems, properties, coordinates and peripheral devices
- Handling an ABB-, Fanuc- and Yaskawa industrial robots, online and offline programming
- Features of collaborative robotics and programming of Universal Robots collaborative robots
- Mobile robotics applications and programming with Omron mobile robot
- Application of sensor technology and artificial intelligence in robotics. Application of machine vision in robotics.
Materials
Lecture material, Lecture demonstrations, Assignments, Product and programming manuals,
Book: Teollisuuden robotiikka.: Suomen Robotiikkayhdistys ry, 2023. (in Finnish)
Teaching methods
Lectures, robot programming exercises in simulaltion environment, laboratory assignments with ABB, Fanuc, Yaskawa, Omron (mobile) and Universal robots.
Student workload
A total of 100 hours studying, which includes 20 hours of classroom education and 20 hours of laboratory assignments.
Evaluation scale
1-5
Assessment criteria, satisfactory (1)
Rating 1 Students master the learning outcomes satisfactorily. The student knows the structure, features, coordinate systems, accessories used in robots. In addition, he/she knows how to use and run programs.
Assessment criteria, good (3)
Rating 3 Students master the learning outcomes as well. The student knows the structure, features, coordinate systems, accessories used in robots. In addition, he/she knows how to use and run programs. The student is able to make a program for an industrial robot and test it.
Assessment criteria, excellent (5)
Rating 5 Students master the learning outcomes to be commended. The student knows the structure, features, coordinate systems, accessories used in robots. In addition, he/she knows how to use and run programs. The student is able to make a program for an industrial robot and test it. The student is able to apply actuators that can be connected to a robot and is able to utilize machine vision.
Assessment methods and criteria
Written examination (50%) and robot programming examination (50%).
The course grade scales between 1-5.
Assessment criteria, good (3)
The student has completed the assignments/sections assigned approvingly. The student knows and mastered to a satisfactory degree the basic concepts and methods associated with the subject.
Assessment criteria, excellent (5)
The student has completed the assignments/sections and actively participated in the course. Students are familiar with the basic concepts and methods involved and are able to apply them when solving normal questions. the student is able to combine what he/she has learned with his previous experience in the subject matter.
Assessment criteria, approved/failed
The student has completed the assignments/sections and actively participated in the course. Students are familiar with the basic concepts and methods involved and are able to apply them when solving normal questions. The student has demonstrated the ability to create new meanings and ideas within the framework of the subject, applying what he/she has previously learned.
Qualifications
No previous studies are required
Further information
The issues of automation technology are internationally similar.
Enrollment
14.11.2022 - 15.01.2023
Timing
09.01.2023 - 26.02.2023
Credits
4 op
Teaching languages
- Finnish
- English
Degree programmes
- Bachelor of Engineering, Automation Engineering
Teachers
- Jarkko Pakkanen
Student groups
-
AUTE20SA
Objective
Upon completion of the course, students will:
- be knowledgeable of various types of robots
- will be capable of inspecting robots and know how to use robots in factory automation and other areas where robotics are used.
- understand the structure, properties, co-ordinates of robots, as well as the peripheral devices used in robots.
- be competent in handling and programming industrial-, collaborative- and mobile robots using online and offline methods of programming.
- be competent in designing and selecting robots and peripheral devices for the automatic handling of products.
Content
- Types of robots
- Mechanical structure of industrial robots
- Control systems, properties, coordinates and peripheral devices
- Handling an ABB-, Fanuc- and Yaskawa industrial robots, online and offline programming
- Features of collaborative robotics and programming of Universal Robots collaborative robots
- Mobile robotics applications and programming with Omron mobile robot
- Application of sensor technology and artificial intelligence in robotics. Application of machine vision in robotics.
Teaching methods
Lectures, robot programming exercises in simulaltion environment, laboratory assignments with ABB, Fanuc, Yaskawa, Omron (mobile) and Universal robots.
Completion alternatives
- Lecturer's material
- Demonstrations during lectures
- Assignments
- Product and programming manuals from importers
- Kuivanen R. Robotiikka. Suomen Robottiyhdistys Ry
Student workload
A total of 100 hours studying, which includes 20 hours of classroom education and 15 hours of laboratory assignments.
Evaluation scale
1-5
Assessment criteria, satisfactory (1)
Rating 1 Students master the learning outcomes satisfactorily. The student knows the structure, features, coordinate systems, accessories used in robots. In addition, he/she knows how to use and run programs.
Assessment criteria, good (3)
Rating 3 Students master the learning outcomes as well. The student knows the structure, features, coordinate systems, accessories used in robots. In addition, he/she knows how to use and run programs. The student is able to make a program for an industrial robot and test it.
Assessment criteria, excellent (5)
Rating 5 Students master the learning outcomes to be commended. The student knows the structure, features, coordinate systems, accessories used in robots. In addition, he/she knows how to use and run programs. The student is able to make a program for an industrial robot and test it. The student is able to apply actuators that can be connected to a robot and is able to utilize machine vision.
Assessment methods and criteria
Written examination (50%) and robot programming examination (50%).
The course grade scales between 1-5.
Assessment criteria, good (3)
The student has completed the assignments/sections assigned approvingly. The student knows and mastered to a satisfactory degree the basic concepts and methods associated with the subject.
Assessment criteria, excellent (5)
The student has completed the assignments/sections and actively participated in the course. Students are familiar with the basic concepts and methods involved and are able to apply them when solving normal questions. He/She is able to combine what he/she has learned with his previous experience in the subject matter.
Assessment criteria, approved/failed
The student has completed the assignments/sections and actively participated in the course. Students are familiar with the basic concepts and methods involved and are able to apply them when solving normal questions. He/She has demonstrated the ability to create new meanings and ideas within the framework of the subject, applying what he/she has previously learned.
Qualifications
No previous studies are required
Further information
The issues of automation technology are internationally similar.