MechanicsLaajuus (3 cr)
Code: AE00CM46
Objective
Upon completion of the course, student will
- be able to utilize the necessary concepts and units that are used in modeling mechanical phenomena
- be able to build and solve physical models that describe different mechanical phenomena
- be able to interpret a physical model as an approximate description of the real world phenomenon
- be able to analyze the motion of solid bodies and fluids, and to understand the empirical nature of the physical science
- be able to evaluate his/her skills on mechanics and apply his/her expertise in the subsequent advanced studies
Content
- Kinematics
- Newton's laws
- Work, power, energy, impulse
- Linear momentum
- Rotary movement
- Mechanics of solids and fluid
Qualifications
No previous studies are required
Assessment criteria, satisfactory (1)
Satisfactory (1 ... 2): The student knows and understands to a satisfactory extent the mechanical basic concepts and methods, and is able to apply them to usual problems.
Assessment criteria, good (3)
Good (3 ... 4): The student is familiar with the concepts and methods of mechanics, and is able to apply them to different types of problems. The student is able to combine the accumulated knowledge and skills with previous experiences in the subject.
Assessment criteria, excellent (5)
Excellent (5): The student is familiar with the concepts and methods of mechanics, and is able to apply them to a variety of different problems. The student has demonstrated creativity and innovation, and is able to find new meanings when applying what they have learned.
Enrollment
11.11.2024 - 19.02.2025
Timing
03.03.2025 - 27.04.2025
Credits
3 op
Teaching languages
- Finnish
Degree programmes
- Bachelor of Engineering, Automation Engineering
Teachers
- Tommi Ylimäki
Student groups
-
AE24Bachelor of Engineering, Automation Engineering
Objective
Upon completion of the course, student will
- be able to utilize the necessary concepts and units that are used in modeling mechanical phenomena
- be able to build and solve physical models that describe different mechanical phenomena
- be able to interpret a physical model as an approximate description of the real world phenomenon
- be able to analyze the motion of solid bodies and fluids, and to understand the empirical nature of the physical science
- be able to evaluate his/her skills on mechanics and apply his/her expertise in the subsequent advanced studies
Content
- Kinematics
- Newton's laws
- Work, power, energy, impulse
- Linear momentum
- Rotary movement
- Mechanics of solids and fluid
Materials
Benson, University Physics. Revised Edition (Wiley)
Upadhyaya, University Physics, ebook (Himalaya Pub. House)
Bhat, University Physics, ebook (Alpha Science International)
Technical Formulas, reference book (Tammertekniikka)
Lecture notes
Teaching methods
Lectures and excercises, independent studying
Employer connections
None
Completion alternatives
None
Student workload
Total work load 80 h. Scheduled studies 32 h, autonomous studies 48 h
Evaluation scale
1-5
Assessment criteria, satisfactory (1)
Satisfactory (1 ... 2): The student knows and understands to a satisfactory extent the mechanical basic concepts and methods, and is able to apply them to usual problems.
Assessment criteria, good (3)
Good (3 ... 4): The student is familiar with the concepts and methods of mechanics, and is able to apply them to different types of problems. The student is able to combine the accumulated knowledge and skills with previous experiences in the subject.
Assessment criteria, excellent (5)
Excellent (5): The student is familiar with the concepts and methods of mechanics, and is able to apply them to a variety of different problems. The student has demonstrated creativity and innovation, and is able to find new meanings when applying what they have learned.
Assessment methods and criteria
Final examination
Qualifications
No previous studies are required
Enrollment
13.11.2023 - 21.02.2024
Timing
04.03.2024 - 28.04.2024
Credits
3 op
Teaching languages
- Finnish
Degree programmes
- Bachelor of Engineering, Automation Engineering
Teachers
- Jouni Björkman
Student groups
-
AE23Bachelor of Engineering, Automation Engineering
Objective
Upon completion of the course, student will
- be able to utilize the necessary concepts and units that are used in modeling mechanical phenomena
- be able to build and solve physical models that describe different mechanical phenomena
- be able to interpret a physical model as an approximate description of the real world phenomenon
- be able to analyze the motion of solid bodies and fluids, and to understand the empirical nature of the physical science
- be able to evaluate his/her skills on mechanics and apply his/her expertise in the subsequent advanced studies
Content
- Kinematics
- Newton's laws
- Work, power, energy, impulse
- Linear momentum
- Rotary movement
- Mechanics of solids and fluid
Materials
Benson, University Physics. Revised Edition (Wiley)
Upadhyaya, University Physics, ebook (Himalaya Pub. House)
Bhat, University Physics, ebook (Alpha Science International)
Technical Formulas, reference book (Tammertekniikka)
Lecture notes
Teaching methods
Lectures and excercises, independent studying
Employer connections
None
Completion alternatives
None
Student workload
Total work load 80 h. Scheduled studies 32 h, autonomous studies 48 h
Evaluation scale
1-5
Assessment criteria, satisfactory (1)
Satisfactory (1 ... 2): The student knows and understands to a satisfactory extent the mechanical basic concepts and methods, and is able to apply them to usual problems.
Assessment criteria, good (3)
Good (3 ... 4): The student is familiar with the concepts and methods of mechanics, and is able to apply them to different types of problems. The student is able to combine the accumulated knowledge and skills with previous experiences in the subject.
Assessment criteria, excellent (5)
Excellent (5): The student is familiar with the concepts and methods of mechanics, and is able to apply them to a variety of different problems. The student has demonstrated creativity and innovation, and is able to find new meanings when applying what they have learned.
Assessment methods and criteria
Final examination
Qualifications
No previous studies are required
Enrollment
16.04.2022 - 12.10.2022
Timing
24.10.2022 - 18.12.2022
Credits
3 op
Teaching languages
- Finnish
Degree programmes
- Bachelor of Engineering, Automation Engineering
Teachers
- Jouni Björkman
- Jyrki Parkkinen
Student groups
-
AE22ABachelor of Engineering, Automation Engineering
Objective
Upon completion of the course, student will
- be able to utilize the necessary concepts and units that are used in modeling mechanical phenomena
- be able to build and solve physical models that describe different mechanical phenomena
- be able to interpret a physical model as an approximate description of the real world phenomenon
- be able to analyze the motion of solid bodies and fluids, and to understand the empirical nature of the physical science
- be able to evaluate his/her skills on mechanics and apply his/her expertise in the subsequent advanced studies
Content
- Kinematics
- Newton's laws
- Work, power, energy, impulse
- Linear momentum
- Rotary movement
- Mechanics of solids and fluid
Materials
Benson, University Physics. Revised Edition (Wiley)
Upadhyaya, University Physics, ebook (Himalaya Pub. House)
Bhat, University Physics, ebook (Alpha Science International)
Technical Formulas, reference book (Tammertekniikka)
Lecture notes
Teaching methods
Lectures and excercises, independent studying
Employer connections
None
Completion alternatives
None
Student workload
Total work load 80 h. Scheduled studies 32 h, autonomous studies 48 h
Evaluation scale
1-5
Assessment criteria, satisfactory (1)
Satisfactory (1 ... 2): The student knows and understands to a satisfactory extent the mechanical basic concepts and methods, and is able to apply them to usual problems.
Assessment criteria, good (3)
Good (3 ... 4): The student is familiar with the concepts and methods of mechanics, and is able to apply them to different types of problems. The student is able to combine the accumulated knowledge and skills with previous experiences in the subject.
Assessment criteria, excellent (5)
Excellent (5): The student is familiar with the concepts and methods of mechanics, and is able to apply them to a variety of different problems. The student has demonstrated creativity and innovation, and is able to find new meanings when applying what they have learned.
Assessment methods and criteria
Final examination
Qualifications
No previous studies are required
Enrollment
16.04.2022 - 22.11.2022
Timing
24.10.2022 - 18.12.2022
Credits
3 op
Teaching languages
- Finnish
Degree programmes
- Bachelor of Engineering, Automation Engineering
Teachers
- Jouni Björkman
Student groups
-
AE22BBachelor of Engineering, Automation Engineering, remote
Objective
Upon completion of the course, student will
- be able to utilize the necessary concepts and units that are used in modeling mechanical phenomena
- be able to build and solve physical models that describe different mechanical phenomena
- be able to interpret a physical model as an approximate description of the real world phenomenon
- be able to analyze the motion of solid bodies and fluids, and to understand the empirical nature of the physical science
- be able to evaluate his/her skills on mechanics and apply his/her expertise in the subsequent advanced studies
Content
- Kinematics
- Newton's laws
- Work, power, energy, impulse
- Linear momentum
- Rotary movement
- Mechanics of solids and fluid
Materials
Benson, University Physics. Revised Edition (Wiley)
Upadhyaya, University Physics, ebook (Himalaya Pub. House)
Bhat, University Physics, ebook (Alpha Science International)
Technical Formulas, reference book (Tammertekniikka)
Lecture notes
Teaching methods
Lectures and excercises, independent studying
Employer connections
None
Completion alternatives
None
Student workload
Total work load 80 h. Scheduled studies 32 h, autonomous studies 48 h
Evaluation scale
1-5
Assessment criteria, satisfactory (1)
Satisfactory (1 ... 2): The student knows and understands to a satisfactory extent the mechanical basic concepts and methods, and is able to apply them to usual problems.
Assessment criteria, good (3)
Good (3 ... 4): The student is familiar with the concepts and methods of mechanics, and is able to apply them to different types of problems. The student is able to combine the accumulated knowledge and skills with previous experiences in the subject.
Assessment criteria, excellent (5)
Excellent (5): The student is familiar with the concepts and methods of mechanics, and is able to apply them to a variety of different problems. The student has demonstrated creativity and innovation, and is able to find new meanings when applying what they have learned.
Assessment methods and criteria
Final examination
Qualifications
No previous studies are required
Enrollment
03.12.2021 - 27.02.2022
Timing
10.01.2022 - 27.02.2022
Credits
3 op
Teaching languages
- English
Degree programmes
- Bachelor of Engineering, Automation Engineering
Teachers
- Jouni Björkman
Student groups
-
AE21Bachelor of Engineering, Automation Engineering
Objective
Upon completion of the course, student will
- be able to utilize the necessary concepts and units that are used in modeling mechanical phenomena
- be able to build and solve physical models that describe different mechanical phenomena
- be able to interpret a physical model as an approximate description of the real world phenomenon
- be able to analyze the motion of solid bodies and fluids, and to understand the empirical nature of the physical science
- be able to evaluate his/her skills on mechanics and apply his/her expertise in the subsequent advanced studies
Content
- Kinematics
- Newton's laws
- Work, power, energy, impulse
- Linear momentum
- Rotary movement
- Mechanics of solids and fluid
Materials
Benson, University Physics. Revised Edition. Wiley
Lecture notes
Teaching methods
Lectures and excercises, independent studying
Employer connections
None
Completion alternatives
None
Student workload
Total work load 80 h. Scheduled studies 28 h, autonomous studies 52 h
Evaluation scale
1-5
Assessment criteria, satisfactory (1)
Satisfactory (1 ... 2): The student knows and understands to a satisfactory extent the mechanical basic concepts and methods, and is able to apply them to usual problems.
Assessment criteria, good (3)
Good (3 ... 4): The student is familiar with the concepts and methods of mechanics, and is able to apply them to different types of problems. The student is able to combine the accumulated knowledge and skills with previous experiences in the subject.
Assessment criteria, excellent (5)
Excellent (5): The student is familiar with the concepts and methods of mechanics, and is able to apply them to a variety of different problems. The student has demonstrated creativity and innovation, and is able to find new meanings when applying what they have learned.
Assessment methods and criteria
Final examination
Qualifications
No previous studies are required