Siirry suoraan sisältöön

Introduction to Artificial IntelligenceLaajuus (3 op)

Tunnus: AE00CM73

Osaamistavoitteet

Students will be competent in using the mathematical methods described in the course contents to solve practical mathematical problems.

Sisältö

Minimization by gradient descent
Linear regression
Logistic regression
Neural networks

Esitietovaatimukset

Algebra and geometry, Vectors and matrices, Differential and integral calculus, Automation technology mathematics

Arviointikriteerit, tyydyttävä (1)

satisfactory (1-2): The student knows and understands to a satisfactory extent the basic concepts and methods discussed in the course, and is able to apply them to usual problems.

Arviointikriteerit, hyvä (3)

good (3-4): The student is familiar with the concepts and methods discussed in the course, and is able to apply them to different types of problems. The student is able to combine the accumulated knowledge and skills with previous experiences in the subject.

Arviointikriteerit, kiitettävä (5)

excellent (5): The student is familiar with the concepts and methods discussed in the course, and is able to apply them to a variety of different problems. The student has demonstrated creativity and innovation, and is able to find new meanings when applying what they have learned

Ilmoittautumisaika

11.11.2024 - 19.02.2025

Ajoitus

03.03.2025 - 27.04.2025

Laajuus

3 op

Yksikkö

SeAMK Automaatio- ja tietotekniikka

Toimipiste

SeAMK Seinäjoki, Frami

Opetuskielet
  • Englanti
Tutkinto-ohjelma
  • Professional Studies in Technology
  • Bachelor of Engineering, Automation Engineering
Opettaja
  • Pasi Mikkonen
Opiskelijaryhmät
  • AE22
    Bachelor of Engineering, Automation Engineering
  • IEPIP24
    International Professional Studies

Tavoitteet

Students will be competent in using the mathematical methods described in the course contents to solve practical mathematical problems.

Sisältö

Minimization by gradient descent
Linear regression
Logistic regression
Neural networks

Oppimateriaalit

ilmoitetaan opintojakson alussa

Opetusmenetelmät

luentoja ja laskuharjoituksia

Opiskelijan ajankäyttö ja kuormitus

81h

Lisätietoja opiskelijoille

Tunneilla 80% läsnäolovaatimus

Arviointiasteikko

1-5

Arviointikriteerit, tyydyttävä (1)

satisfactory (1-2): The student knows and understands to a satisfactory extent the basic concepts and methods discussed in the course, and is able to apply them to usual problems.

Arviointikriteerit, hyvä (3)

good (3-4): The student is familiar with the concepts and methods discussed in the course, and is able to apply them to different types of problems. The student is able to combine the accumulated knowledge and skills with previous experiences in the subject.

Arviointikriteerit, kiitettävä (5)

excellent (5): The student is familiar with the concepts and methods discussed in the course, and is able to apply them to a variety of different problems. The student has demonstrated creativity and innovation, and is able to find new meanings when applying what they have learned

Arviointimenetelmät ja arvioinnin perusteet

harjoitustyöt

Esitietovaatimukset

Algebra and geometry, Vectors and matrices, Differential and integral calculus, Automation technology mathematics

Ilmoittautumisaika

22.04.2024 - 09.10.2024

Ajoitus

21.10.2024 - 18.12.2024

Laajuus

3 op

Yksikkö

SeAMK Automaatio- ja tietotekniikka

Toimipiste

SeAMK Seinäjoki, Frami

Opetuskielet
  • Englanti
Tutkinto-ohjelma
  • Bachelor of Engineering, Automation Engineering
Opettaja
  • Pasi Mikkonen
Opiskelijaryhmät
  • TITE21
    Insinööri (AMK), Tietotekniikka

Tavoitteet

Students will be competent in using the mathematical methods described in the course contents to solve practical mathematical problems.

Sisältö

Minimization by gradient descent
Linear regression
Logistic regression
Neural networks

Oppimateriaalit

ilmoitetaan opintojakson alussa

Opetusmenetelmät

luentoja ja laskuharjoituksia

Opiskelijan ajankäyttö ja kuormitus

81h

Arviointiasteikko

1-5

Arviointikriteerit, tyydyttävä (1)

satisfactory (1-2): The student knows and understands to a satisfactory extent the basic concepts and methods discussed in the course, and is able to apply them to usual problems.

Arviointikriteerit, hyvä (3)

good (3-4): The student is familiar with the concepts and methods discussed in the course, and is able to apply them to different types of problems. The student is able to combine the accumulated knowledge and skills with previous experiences in the subject.

Arviointikriteerit, kiitettävä (5)

excellent (5): The student is familiar with the concepts and methods discussed in the course, and is able to apply them to a variety of different problems. The student has demonstrated creativity and innovation, and is able to find new meanings when applying what they have learned

Arviointimenetelmät ja arvioinnin perusteet

harjoitustyöt

Esitietovaatimukset

Algebra and geometry, Vectors and matrices, Differential and integral calculus, Automation technology mathematics

Ilmoittautumisaika

13.11.2023 - 21.02.2024

Ajoitus

04.03.2024 - 28.04.2024

Laajuus

3 op

Yksikkö

SeAMK Automaatio- ja tietotekniikka

Toimipiste

SeAMK Seinäjoki, Frami

Opetuskielet
  • Englanti
Tutkinto-ohjelma
  • Professional Studies in Technology
  • Bachelor of Engineering, Automation Engineering
Opettaja
  • Pasi Mikkonen
Opiskelijaryhmät
  • AE21
    Bachelor of Engineering, Automation Engineering
  • IEPIP23
    International Professional Studies

Tavoitteet

Students will be competent in using the mathematical methods described in the course contents to solve practical mathematical problems.

Sisältö

Minimization by gradient descent
Linear regression
Logistic regression
Neural networks

Oppimateriaalit

ilmoitetaan opintojakson alussa

Opetusmenetelmät

luentoja ja laskuharjoituksia

Opiskelijan ajankäyttö ja kuormitus

81h

Arviointiasteikko

1-5

Arviointikriteerit, tyydyttävä (1)

satisfactory (1-2): The student knows and understands to a satisfactory extent the basic concepts and methods discussed in the course, and is able to apply them to usual problems.

Arviointikriteerit, hyvä (3)

good (3-4): The student is familiar with the concepts and methods discussed in the course, and is able to apply them to different types of problems. The student is able to combine the accumulated knowledge and skills with previous experiences in the subject.

Arviointikriteerit, kiitettävä (5)

excellent (5): The student is familiar with the concepts and methods discussed in the course, and is able to apply them to a variety of different problems. The student has demonstrated creativity and innovation, and is able to find new meanings when applying what they have learned

Arviointimenetelmät ja arvioinnin perusteet

harjoitustyöt

Esitietovaatimukset

Algebra and geometry, Vectors and matrices, Differential and integral calculus, Automation technology mathematics

Ilmoittautumisaika

13.11.2023 - 17.01.2024

Ajoitus

08.01.2024 - 28.04.2024

Laajuus

3 op

Yksikkö

SeAMK Automaatio- ja tietotekniikka

Toimipiste

SeAMK Seinäjoki, Frami

Opetuskielet
  • Englanti
Tutkinto-ohjelma
  • Ohjelmistosuunnittelu
Opettaja
  • Pasi Mikkonen
Opiskelijaryhmät
  • OHSU23
    Ohjelmistosuunnittelu

Tavoitteet

Students will be competent in using the mathematical methods described in the course contents to solve practical mathematical problems.

Sisältö

Minimization by gradient descent
Linear regression
Logistic regression
Neural networks

Oppimateriaalit

ilmoitetaan opintojakson alussa

Opetusmenetelmät

luentoja ja laskuharjoituksia

Opiskelijan ajankäyttö ja kuormitus

81h

Arviointiasteikko

1-5

Arviointikriteerit, tyydyttävä (1)

satisfactory (1-2): The student knows and understands to a satisfactory extent the basic concepts and methods discussed in the course, and is able to apply them to usual problems.

Arviointikriteerit, hyvä (3)

good (3-4): The student is familiar with the concepts and methods discussed in the course, and is able to apply them to different types of problems. The student is able to combine the accumulated knowledge and skills with previous experiences in the subject.

Arviointikriteerit, kiitettävä (5)

excellent (5): The student is familiar with the concepts and methods discussed in the course, and is able to apply them to a variety of different problems. The student has demonstrated creativity and innovation, and is able to find new meanings when applying what they have learned

Arviointimenetelmät ja arvioinnin perusteet

harjoitustyöt

Esitietovaatimukset

Algebra and geometry, Vectors and matrices, Differential and integral calculus, Automation technology mathematics