Introduction to Artificial IntelligenceLaajuus (3 op)
Tunnus: AE00CM73
Osaamistavoitteet
Students will be competent in using the mathematical methods described in the course contents to solve practical mathematical problems.
Sisältö
Minimization by gradient descent
Linear regression
Logistic regression
Neural networks
Esitietovaatimukset
Algebra and geometry, Vectors and matrices, Differential and integral calculus, Automation technology mathematics
Arviointikriteerit, tyydyttävä (1)
satisfactory (1-2): The student knows and understands to a satisfactory extent the basic concepts and methods discussed in the course, and is able to apply them to usual problems.
Arviointikriteerit, hyvä (3)
good (3-4): The student is familiar with the concepts and methods discussed in the course, and is able to apply them to different types of problems. The student is able to combine the accumulated knowledge and skills with previous experiences in the subject.
Arviointikriteerit, kiitettävä (5)
excellent (5): The student is familiar with the concepts and methods discussed in the course, and is able to apply them to a variety of different problems. The student has demonstrated creativity and innovation, and is able to find new meanings when applying what they have learned
Ilmoittautumisaika
11.11.2024 - 19.02.2025
Ajoitus
03.03.2025 - 27.04.2025
Laajuus
3 op
Yksikkö
SeAMK Automaatio- ja tietotekniikka
Toimipiste
SeAMK Seinäjoki, Frami
Opetuskielet
- Englanti
Tutkinto-ohjelma
- Professional Studies in Technology
- Bachelor of Engineering, Automation Engineering
Opettaja
- Pasi Mikkonen
Opiskelijaryhmät
-
AE22Bachelor of Engineering, Automation Engineering
-
IEPIP24International Professional Studies
Tavoitteet
Students will be competent in using the mathematical methods described in the course contents to solve practical mathematical problems.
Sisältö
Minimization by gradient descent
Linear regression
Logistic regression
Neural networks
Oppimateriaalit
ilmoitetaan opintojakson alussa
Opetusmenetelmät
luentoja ja laskuharjoituksia
Opiskelijan ajankäyttö ja kuormitus
81h
Lisätietoja opiskelijoille
Tunneilla 80% läsnäolovaatimus
Arviointiasteikko
1-5
Arviointikriteerit, tyydyttävä (1)
satisfactory (1-2): The student knows and understands to a satisfactory extent the basic concepts and methods discussed in the course, and is able to apply them to usual problems.
Arviointikriteerit, hyvä (3)
good (3-4): The student is familiar with the concepts and methods discussed in the course, and is able to apply them to different types of problems. The student is able to combine the accumulated knowledge and skills with previous experiences in the subject.
Arviointikriteerit, kiitettävä (5)
excellent (5): The student is familiar with the concepts and methods discussed in the course, and is able to apply them to a variety of different problems. The student has demonstrated creativity and innovation, and is able to find new meanings when applying what they have learned
Arviointimenetelmät ja arvioinnin perusteet
harjoitustyöt
Esitietovaatimukset
Algebra and geometry, Vectors and matrices, Differential and integral calculus, Automation technology mathematics
Ilmoittautumisaika
22.04.2024 - 09.10.2024
Ajoitus
21.10.2024 - 18.12.2024
Laajuus
3 op
Yksikkö
SeAMK Automaatio- ja tietotekniikka
Toimipiste
SeAMK Seinäjoki, Frami
Opetuskielet
- Englanti
Tutkinto-ohjelma
- Bachelor of Engineering, Automation Engineering
Opettaja
- Pasi Mikkonen
Opiskelijaryhmät
-
TITE21Insinööri (AMK), Tietotekniikka
Tavoitteet
Students will be competent in using the mathematical methods described in the course contents to solve practical mathematical problems.
Sisältö
Minimization by gradient descent
Linear regression
Logistic regression
Neural networks
Oppimateriaalit
ilmoitetaan opintojakson alussa
Opetusmenetelmät
luentoja ja laskuharjoituksia
Opiskelijan ajankäyttö ja kuormitus
81h
Arviointiasteikko
1-5
Arviointikriteerit, tyydyttävä (1)
satisfactory (1-2): The student knows and understands to a satisfactory extent the basic concepts and methods discussed in the course, and is able to apply them to usual problems.
Arviointikriteerit, hyvä (3)
good (3-4): The student is familiar with the concepts and methods discussed in the course, and is able to apply them to different types of problems. The student is able to combine the accumulated knowledge and skills with previous experiences in the subject.
Arviointikriteerit, kiitettävä (5)
excellent (5): The student is familiar with the concepts and methods discussed in the course, and is able to apply them to a variety of different problems. The student has demonstrated creativity and innovation, and is able to find new meanings when applying what they have learned
Arviointimenetelmät ja arvioinnin perusteet
harjoitustyöt
Esitietovaatimukset
Algebra and geometry, Vectors and matrices, Differential and integral calculus, Automation technology mathematics
Ilmoittautumisaika
13.11.2023 - 21.02.2024
Ajoitus
04.03.2024 - 28.04.2024
Laajuus
3 op
Yksikkö
SeAMK Automaatio- ja tietotekniikka
Toimipiste
SeAMK Seinäjoki, Frami
Opetuskielet
- Englanti
Tutkinto-ohjelma
- Professional Studies in Technology
- Bachelor of Engineering, Automation Engineering
Opettaja
- Pasi Mikkonen
Opiskelijaryhmät
-
AE21Bachelor of Engineering, Automation Engineering
-
IEPIP23International Professional Studies
Tavoitteet
Students will be competent in using the mathematical methods described in the course contents to solve practical mathematical problems.
Sisältö
Minimization by gradient descent
Linear regression
Logistic regression
Neural networks
Oppimateriaalit
ilmoitetaan opintojakson alussa
Opetusmenetelmät
luentoja ja laskuharjoituksia
Opiskelijan ajankäyttö ja kuormitus
81h
Arviointiasteikko
1-5
Arviointikriteerit, tyydyttävä (1)
satisfactory (1-2): The student knows and understands to a satisfactory extent the basic concepts and methods discussed in the course, and is able to apply them to usual problems.
Arviointikriteerit, hyvä (3)
good (3-4): The student is familiar with the concepts and methods discussed in the course, and is able to apply them to different types of problems. The student is able to combine the accumulated knowledge and skills with previous experiences in the subject.
Arviointikriteerit, kiitettävä (5)
excellent (5): The student is familiar with the concepts and methods discussed in the course, and is able to apply them to a variety of different problems. The student has demonstrated creativity and innovation, and is able to find new meanings when applying what they have learned
Arviointimenetelmät ja arvioinnin perusteet
harjoitustyöt
Esitietovaatimukset
Algebra and geometry, Vectors and matrices, Differential and integral calculus, Automation technology mathematics
Ilmoittautumisaika
13.11.2023 - 17.01.2024
Ajoitus
08.01.2024 - 28.04.2024
Laajuus
3 op
Yksikkö
SeAMK Automaatio- ja tietotekniikka
Toimipiste
SeAMK Seinäjoki, Frami
Opetuskielet
- Englanti
Tutkinto-ohjelma
- Ohjelmistosuunnittelu
Opettaja
- Pasi Mikkonen
Opiskelijaryhmät
-
OHSU23Ohjelmistosuunnittelu
Tavoitteet
Students will be competent in using the mathematical methods described in the course contents to solve practical mathematical problems.
Sisältö
Minimization by gradient descent
Linear regression
Logistic regression
Neural networks
Oppimateriaalit
ilmoitetaan opintojakson alussa
Opetusmenetelmät
luentoja ja laskuharjoituksia
Opiskelijan ajankäyttö ja kuormitus
81h
Arviointiasteikko
1-5
Arviointikriteerit, tyydyttävä (1)
satisfactory (1-2): The student knows and understands to a satisfactory extent the basic concepts and methods discussed in the course, and is able to apply them to usual problems.
Arviointikriteerit, hyvä (3)
good (3-4): The student is familiar with the concepts and methods discussed in the course, and is able to apply them to different types of problems. The student is able to combine the accumulated knowledge and skills with previous experiences in the subject.
Arviointikriteerit, kiitettävä (5)
excellent (5): The student is familiar with the concepts and methods discussed in the course, and is able to apply them to a variety of different problems. The student has demonstrated creativity and innovation, and is able to find new meanings when applying what they have learned
Arviointimenetelmät ja arvioinnin perusteet
harjoitustyöt
Esitietovaatimukset
Algebra and geometry, Vectors and matrices, Differential and integral calculus, Automation technology mathematics