Siirry suoraan sisältöön

Numeerinen mallinnusLaajuus (3 op)

Opintojakson tunnus: A800DB96

Opintojakson perustiedot


Laajuus
3 op
Vastuuhenkilö
Pasi Mikkonen

Osaamistavoitteet

Opiskelija osaa soveltaa kurssilla esiteltyjä matemaattisia menetelmiä käytännön ongelmien ratkaisemiseksi

Sisältö

Opintojakson sisältö
Koneoppimisen perusteita:
Minimointi nopeimman laskeutumisen periaatteella
Lineaarinen regression
Logistinen regressio
Neuroverkot

Esitietovaatimukset

Algebra ja geometria, Vektorit ja matriisit, Differentiaali- ja integraalilaskenta, Automaatiotekniikan matematiikka

Arviointikriteerit, tyydyttävä (1)

tyydyttävä (1-2): Opiskelija tuntee ja hallitsee tyydyttävässä määrin koneoppimisen peruskäsitteet ja menetelmät sekä kykenee soveltamaan niitä tavanomaisten ongelmien ratkaisemisessa.

Arviointikriteerit, hyvä (3)

hyvä (3-4): Opiskelija tuntee hyvin koneoppimiseen liittyvät peruskäsitteet ja menetelmät sekä kykenee soveltamaan niitä erityyppisten ongelmien ratkaisemisessa. Hän kykenee yhdistämään oppimaansa aiempiin kokemuksiinsa aihepiiristä.

Arviointikriteerit, kiitettävä (5)

kiitettävä (5): Opiskelija tuntee kiitettävästi koneoppimiseen liittyvät käsitteet ja menetelmät sekä kykenee soveltamaan niitä monipuolisesti erityyppisten kysymysten ja ongelmien ratkaisemisessa. Hän on osoittanut kykyä luoda aihepiirin puitteissa uusia merkityksiä sekä osoittaa innovatiivisuutta oppimaansa soveltaen.

Oppimateriaalit

Luennoitsijan luentomateriaalit ja luentojen esimerkit.

Siirry alkuun