Skip to main content

Electrical and Thermal PhysicsLaajuus (3 cr)

Code: AE00CM47

Objective

Upon completion of the course, student will
- be able to utilize the necessary concepts and units that are used in modeling thermal and electrical phenomena
- be able to analyze the thermodynamic properties of materials and solid bodies with equilibrium models
- be able to interpret thermal and electrical laws as approximate empirical descriptions
- is able to analyze electrostatic interactions between electric fields and charged particles
- be able to solve even complicated DC circuits
- be able to identify electricity production and transmission processes, such as the use of three-phase power, transformer, generator and induction motor operation
- be able to evaluate his/her skills on thermal and electrical physics and apply his/her expertise in the subsequent advanced studies

Content

- Basics of thermal physics
- Electrostatics
- Direct current
- Alternating current
- Basics of magnetism

Qualifications

Mechanics

Assessment criteria, satisfactory (1)

Satisfactory (1 ... 2): The student knows and understands to a satisfactory extent the basic concepts and methods of both electricity and thermal physics. The student is able to apply electricity and thermal physics to usual problems.

Assessment criteria, good (3)

Good (3 ... 4): The student is familiar with the concepts and methods of electricity and thermal physics, and is able to apply them to different types of problems. The student is able to combine the accumulated knowledge and skills with previous experiences in the subject.

Assessment criteria, excellent (5)

Excellent (5): The student is familiar with the concepts and methods of electricity and thermal physics, and is able to apply them to a variety of different problems. The student has demonstrated creativity and innovation, and is able to find new meanings when applying what they have learned.

Enrollment

11.11.2024 - 15.01.2025

Timing

07.01.2025 - 23.02.2025

Credits

3 op

Teaching languages
  • Finnish
Degree programmes
  • Bachelor of Engineering, Automation Engineering
Teachers
  • Pekka Sahimaa
Student groups
  • AE24
    Bachelor of Engineering, Automation Engineering

Objective

Upon completion of the course, student will
- be able to utilize the necessary concepts and units that are used in modeling thermal and electrical phenomena
- be able to analyze the thermodynamic properties of materials and solid bodies with equilibrium models
- be able to interpret thermal and electrical laws as approximate empirical descriptions
- is able to analyze electrostatic interactions between electric fields and charged particles
- be able to solve even complicated DC circuits
- be able to identify electricity production and transmission processes, such as the use of three-phase power, transformer, generator and induction motor operation
- be able to evaluate his/her skills on thermal and electrical physics and apply his/her expertise in the subsequent advanced studies

Content

- Basics of thermal physics
- Electrostatics
- Direct current
- Alternating current
- Basics of magnetism

Materials

Benson: University Physics. Revised Edition (Wiley)
Upadhyaya: University Physics, ebook (Himalaya Pub. House)
Bhat: University Physics, ebook (Alpha Science International)
Technical formulas, reference book (Tammertekniikka)
Lecture notes

Teaching methods

Lectures and exercises. Independent studying.

Employer connections

None

Completion alternatives

None

Student workload

Total work load 80 h. Scheduled studies 28 h, autonomous studies 52 h

Evaluation scale

1-5

Assessment criteria, satisfactory (1)

Satisfactory (1 ... 2): The student knows and understands to a satisfactory extent the basic concepts and methods of both electricity and thermal physics. The student is able to apply electricity and thermal physics to usual problems.

Assessment criteria, good (3)

Good (3 ... 4): The student is familiar with the concepts and methods of electricity and thermal physics, and is able to apply them to different types of problems. The student is able to combine the accumulated knowledge and skills with previous experiences in the subject.

Assessment criteria, excellent (5)

Excellent (5): The student is familiar with the concepts and methods of electricity and thermal physics, and is able to apply them to a variety of different problems. The student has demonstrated creativity and innovation, and is able to find new meanings when applying what they have learned.

Assessment methods and criteria

Final examination

Qualifications

Mechanics

Enrollment

13.11.2023 - 17.01.2024

Timing

08.01.2024 - 25.02.2024

Credits

3 op

Teaching languages
  • Finnish
Degree programmes
  • Bachelor of Engineering, Automation Engineering
Teachers
  • Jouni Björkman
Student groups
  • AE23
    Bachelor of Engineering, Automation Engineering

Objective

Upon completion of the course, student will
- be able to utilize the necessary concepts and units that are used in modeling thermal and electrical phenomena
- be able to analyze the thermodynamic properties of materials and solid bodies with equilibrium models
- be able to interpret thermal and electrical laws as approximate empirical descriptions
- is able to analyze electrostatic interactions between electric fields and charged particles
- be able to solve even complicated DC circuits
- be able to identify electricity production and transmission processes, such as the use of three-phase power, transformer, generator and induction motor operation
- be able to evaluate his/her skills on thermal and electrical physics and apply his/her expertise in the subsequent advanced studies

Content

- Basics of thermal physics
- Electrostatics
- Direct current
- Alternating current
- Basics of magnetism

Materials

Benson: University Physics. Revised Edition (Wiley)
Upadhyaya: University Physics, ebook (Himalaya Pub. House)
Bhat: University Physics, ebook (Alpha Science International)
Technical formulas, reference book (Tammertekniikka)
Lecture notes

Teaching methods

Lectures and exercises. Independent studying.

Employer connections

None

Completion alternatives

None

Student workload

Total work load 80 h. Scheduled studies 28 h, autonomous studies 52 h

Evaluation scale

1-5

Assessment criteria, satisfactory (1)

Satisfactory (1 ... 2): The student knows and understands to a satisfactory extent the basic concepts and methods of both electricity and thermal physics. The student is able to apply electricity and thermal physics to usual problems.

Assessment criteria, good (3)

Good (3 ... 4): The student is familiar with the concepts and methods of electricity and thermal physics, and is able to apply them to different types of problems. The student is able to combine the accumulated knowledge and skills with previous experiences in the subject.

Assessment criteria, excellent (5)

Excellent (5): The student is familiar with the concepts and methods of electricity and thermal physics, and is able to apply them to a variety of different problems. The student has demonstrated creativity and innovation, and is able to find new meanings when applying what they have learned.

Assessment methods and criteria

Final examination

Qualifications

Mechanics

Enrollment

14.11.2022 - 17.03.2023

Timing

06.03.2023 - 30.04.2023

Credits

3 op

Teaching languages
  • Finnish
Degree programmes
  • Bachelor of Engineering, Automation Engineering
Teachers
  • Jouni Björkman
Student groups
  • AE22B
    Bachelor of Engineering, Automation Engineering, remote
  • AE22A
    Bachelor of Engineering, Automation Engineering

Objective

Upon completion of the course, student will
- be able to utilize the necessary concepts and units that are used in modeling thermal and electrical phenomena
- be able to analyze the thermodynamic properties of materials and solid bodies with equilibrium models
- be able to interpret thermal and electrical laws as approximate empirical descriptions
- is able to analyze electrostatic interactions between electric fields and charged particles
- be able to solve even complicated DC circuits
- be able to identify electricity production and transmission processes, such as the use of three-phase power, transformer, generator and induction motor operation
- be able to evaluate his/her skills on thermal and electrical physics and apply his/her expertise in the subsequent advanced studies

Content

- Basics of thermal physics
- Electrostatics
- Direct current
- Alternating current
- Basics of magnetism

Materials

Benson: University Physics. Revised Edition (Wiley)
Upadhyaya: University Physics, ebook (Himalaya Pub. House)
Bhat: University Physics, ebook (Alpha Science International)
Technical formulas, reference book (Tammertekniikka)
Lecture notes

Teaching methods

Lectures and exercises. Independent studying.

Employer connections

None

Completion alternatives

None

Student workload

Total work load 80 h. Scheduled studies 28 h, autonomous studies 52 h

Evaluation scale

1-5

Assessment criteria, satisfactory (1)

Satisfactory (1 ... 2): The student knows and understands to a satisfactory extent the basic concepts and methods of both electricity and thermal physics. The student is able to apply electricity and thermal physics to usual problems.

Assessment criteria, good (3)

Good (3 ... 4): The student is familiar with the concepts and methods of electricity and thermal physics, and is able to apply them to different types of problems. The student is able to combine the accumulated knowledge and skills with previous experiences in the subject.

Assessment criteria, excellent (5)

Excellent (5): The student is familiar with the concepts and methods of electricity and thermal physics, and is able to apply them to a variety of different problems. The student has demonstrated creativity and innovation, and is able to find new meanings when applying what they have learned.

Assessment methods and criteria

Final examination

Qualifications

Mechanics

Enrollment

07.02.2022 - 20.03.2022

Timing

07.03.2022 - 08.05.2022

Credits

3 op

Teaching languages
  • English
Degree programmes
  • Bachelor of Engineering, Automation Engineering
Teachers
  • Jouni Björkman
Student groups
  • AE21
    Bachelor of Engineering, Automation Engineering

Objective

Upon completion of the course, student will
- be able to utilize the necessary concepts and units that are used in modeling thermal and electrical phenomena
- be able to analyze the thermodynamic properties of materials and solid bodies with equilibrium models
- be able to interpret thermal and electrical laws as approximate empirical descriptions
- is able to analyze electrostatic interactions between electric fields and charged particles
- be able to solve even complicated DC circuits
- be able to identify electricity production and transmission processes, such as the use of three-phase power, transformer, generator and induction motor operation
- be able to evaluate his/her skills on thermal and electrical physics and apply his/her expertise in the subsequent advanced studies

Content

- Basics of thermal physics
- Electrostatics
- Direct current
- Alternating current
- Basics of magnetism

Materials

Benson, University Physics. Revised Edition. Wiley
Lecture notes

Teaching methods

Lectures and excercises. Independent studying.

Employer connections

None

Completion alternatives

None

Student workload

Total work load 80 h. Scheduled studies 32 h, autonomous studies 48 h

Evaluation scale

1-5

Assessment criteria, satisfactory (1)

Satisfactory (1 ... 2): The student knows and understands to a satisfactory extent the basic concepts and methods of both electricity and thermal physics. The student is able to apply electricity and thermal physics to usual problems.

Assessment criteria, good (3)

Good (3 ... 4): The student is familiar with the concepts and methods of electricity and thermal physics, and is able to apply them to different types of problems. The student is able to combine the accumulated knowledge and skills with previous experiences in the subject.

Assessment criteria, excellent (5)

Excellent (5): The student is familiar with the concepts and methods of electricity and thermal physics, and is able to apply them to a variety of different problems. The student has demonstrated creativity and innovation, and is able to find new meanings when applying what they have learned.

Assessment methods and criteria

Final examination

Qualifications

Mechanics