Skip to main content

Wave motion and modern physics (3 cr)

Code: KL25AA30000-3010

General information


Enrollment

30.07.2021 - 12.09.2021

Timing

30.08.2021 - 17.10.2021

Credits

3 op

Teaching languages

  • Finnish

Degree programmes

  • Bachelor of Engineering, Automation Engineering

Teachers

  • Jouni Björkman

Student groups

  • AUTE20KA

Objective

Students will possess basic knowledge of the physics associated with technology in the areas described in the course contents, and the readiness they will need to acquire advanced knowledge in technology in their further studies and the working world. They will be competent in solving various problems in physics using models (magnitude equations) and presenting their results appropriately.

Content

- Harmonic oscillation
- Wave motion
- Sound
- Optics
- Quantum physics
- Atom- and nuclear physics

Materials

- Peltonen H. et al. Insinöörin (AMK) Fysiikka, Part 2. Lahden teho-opetus. Latest edition
- Tekniikan kaavasto, Tammertekniikka.

Teaching methods

- Lectures and calculations: 28 hours
- Independent study: 52 hours

Employer connections

None

Student workload

Total work load of the course: 80 hours, of which scheduled studies 28 h and autonomous studies 52 h.

Evaluation scale

1-5

Assessment criteria, satisfactory (1)

(1 ... 2): The student knows and understands to a satisfactory extent the basic concepts and methods of wave and modern physics, and is able to apply them to usual problems. The student is aware of the limitations of classical physics, and identifies the status of the modern physics in the world view.

Assessment criteria, good (3)

(3 ... 4): The student is familiar with the concepts and methods of both wave and modern physics, and is able to apply them to different types of problems. The student is able to combine the accumulated knowledge and skills with previous experiences in the subject.

Assessment criteria, excellent (5)

(5): The student is familiar with the concepts and methods of wave and modern physics, and is able to apply them to a variety of different problems. The student has demonstrated creativity and innovation, and is able to find new meanings when applying what they have learned.

Assessment methods and criteria

Final examination

Qualifications

No previous studies are required. Basic knowledge about mechanics and electromagnetism is strongly recommended.