Physics laboratory worksLaajuus (3 cr)
Code: KC00CB67
Objective
Upon completion of the course, student will
- be able to use the common tools and methods used in the research of technology
- be able to identify restrictions of the basic experimental research tools
- become familiar with the experimental data acquisition and are able to make controlled measurements
- be able to process results and to evaluate measurement methods and reliability of the results
- be able to analyze results with computer-assisted mathematical tools
- be able to form a scientific report based on the received measurements and their analysis by using a word processing program
- be able to build the relationship between theoretical knowledge and practical knowledge of physics
- be able to evaluate his/her skills and apply his/her expertise in the subsequent advanced studies and real problems at work
Content
Laboratory experiments from different areas of physics and engieering.
Qualifications
Mechanics and Electrical and thermal physics or similar knowledge and skills
Assessment criteria, satisfactory (1)
Satisfactory (1 ... 2): The student is able to make basic measurements in accordance with working instructions and work safely in the laboratory. The student is able to deal with measurement results and to present the results graphically using computer-aided tools. The student is able to assess the reliability of the measurements according to instructions. The student is able to present a short technical report of the results of the measurements.
Assessment criteria, good (3)
Good (3 ... 4): The student is able to make different types of measurements in accordance with work instructions and work independently in the laboratory. The student is able to deal with the measurement results, and present the results graphically using computer-aided tools. The student is able to assess the reliability of measurements using different types of error estimation methods. The student is able to present the results in a logical and clear technical report.
Assessment criteria, excellent (5)
Excellent (5): The student works independently in the laboratory, and is able to make measurements based on instructions and develop the measurement methods. The student is able to evaluate the results using a wide range of computer-assisted tools, make reliable error estimates and draw conclusions from the results and error estimates. The student is able to present the results and conclusions in a logical and clear technical report.
Materials
Instructions for exercises in physics (Seinäjoki University of Applied Sciences, School of Engineering)
Enrollment
11.11.2024 - 19.02.2025
Timing
03.03.2025 - 27.04.2025
Credits
3 op
Teaching languages
- Finnish
Degree programmes
- Bachelor of Engineering, Mechanical Engineering
Teachers
- Pasi Junell
Scheduling groups
- Pienryhmä 1 (Size: 0. Open UAS: 0.)
- Pienryhmä 2 (Size: 0. Open UAS: 0.)
Student groups
-
AUTO23
Education groups
- Small group 1
- Small group 2
Objective
Upon completion of the course, student will
- be able to use the common tools and methods used in the research of technology
- be able to identify restrictions of the basic experimental research tools
- become familiar with the experimental data acquisition and are able to make controlled measurements
- be able to process results and to evaluate measurement methods and reliability of the results
- be able to analyze results with computer-assisted mathematical tools
- be able to form a scientific report based on the received measurements and their analysis by using a word processing program
- be able to build the relationship between theoretical knowledge and practical knowledge of physics
- be able to evaluate his/her skills and apply his/her expertise in the subsequent advanced studies and real problems at work
Content
Laboratory experiments from different areas of physics and engieering.
Materials
Guidelines for laboratory assignments
Books for physics in university of applied sciences
Teaching methods
Laboratory assignments and reports
Student workload
To be announced in the beginning of laboratory works
Evaluation scale
1-5
Assessment criteria, satisfactory (1)
Satisfactory (1 ... 2): The student is able to make basic measurements in accordance with working instructions and work safely in the laboratory. The student is able to deal with measurement results and to present the results graphically using computer-aided tools. The student is able to assess the reliability of the measurements according to instructions. The student is able to present a short technical report of the results of the measurements.
Assessment criteria, good (3)
Good (3 ... 4): The student is able to make different types of measurements in accordance with work instructions and work independently in the laboratory. The student is able to deal with the measurement results, and present the results graphically using computer-aided tools. The student is able to assess the reliability of measurements using different types of error estimation methods. The student is able to present the results in a logical and clear technical report.
Assessment criteria, excellent (5)
Excellent (5): The student works independently in the laboratory, and is able to make measurements based on instructions and develop the measurement methods. The student is able to evaluate the results using a wide range of computer-assisted tools, make reliable error estimates and draw conclusions from the results and error estimates. The student is able to present the results and conclusions in a logical and clear technical report.
Assessment methods and criteria
Reports and exercices
Qualifications
Mechanics and Electrical and thermal physics or similar knowledge and skills
Enrollment
11.11.2024 - 15.01.2025
Timing
07.01.2025 - 23.02.2025
Credits
3 op
Teaching languages
- Finnish
Degree programmes
- Bachelor of Engineering, Mechanical Engineering
Teachers
- Pekka Sahimaa
Scheduling groups
- Pienryhmä 1 (Size: 0. Open UAS: 0.)
- Pienryhmä 2 (Size: 0. Open UAS: 0.)
Student groups
-
KONE23Bachelor of Engineering, Mechanical Engineering
Education groups
- Small group 1
- Small group 2
Objective
Upon completion of the course, student will
- be able to use the common tools and methods used in the research of technology
- be able to identify restrictions of the basic experimental research tools
- become familiar with the experimental data acquisition and are able to make controlled measurements
- be able to process results and to evaluate measurement methods and reliability of the results
- be able to analyze results with computer-assisted mathematical tools
- be able to form a scientific report based on the received measurements and their analysis by using a word processing program
- be able to build the relationship between theoretical knowledge and practical knowledge of physics
- be able to evaluate his/her skills and apply his/her expertise in the subsequent advanced studies and real problems at work
Content
Laboratory experiments from different areas of physics and engieering.
Materials
Instructions for exercises in physics (Seinäjoki University of Applied Sciences, School of Engineering)
Evaluation scale
1-5
Assessment criteria, satisfactory (1)
Satisfactory (1 ... 2): The student is able to make basic measurements in accordance with working instructions and work safely in the laboratory. The student is able to deal with measurement results and to present the results graphically using computer-aided tools. The student is able to assess the reliability of the measurements according to instructions. The student is able to present a short technical report of the results of the measurements.
Assessment criteria, good (3)
Good (3 ... 4): The student is able to make different types of measurements in accordance with work instructions and work independently in the laboratory. The student is able to deal with the measurement results, and present the results graphically using computer-aided tools. The student is able to assess the reliability of measurements using different types of error estimation methods. The student is able to present the results in a logical and clear technical report.
Assessment criteria, excellent (5)
Excellent (5): The student works independently in the laboratory, and is able to make measurements based on instructions and develop the measurement methods. The student is able to evaluate the results using a wide range of computer-assisted tools, make reliable error estimates and draw conclusions from the results and error estimates. The student is able to present the results and conclusions in a logical and clear technical report.
Qualifications
Mechanics and Electrical and thermal physics or similar knowledge and skills
Enrollment
22.04.2024 - 04.09.2024
Timing
12.08.2024 - 03.11.2024
Credits
3 op
Teaching languages
- Finnish
Degree programmes
- Bachelor of Engineering, Mechanical Engineering
Teachers
- Pekka Sahimaa
Student groups
-
MKONE22
Objective
Upon completion of the course, student will
- be able to use the common tools and methods used in the research of technology
- be able to identify restrictions of the basic experimental research tools
- become familiar with the experimental data acquisition and are able to make controlled measurements
- be able to process results and to evaluate measurement methods and reliability of the results
- be able to analyze results with computer-assisted mathematical tools
- be able to form a scientific report based on the received measurements and their analysis by using a word processing program
- be able to build the relationship between theoretical knowledge and practical knowledge of physics
- be able to evaluate his/her skills and apply his/her expertise in the subsequent advanced studies and real problems at work
Content
Laboratory experiments from different areas of physics and engieering.
Materials
Instructions for exercises in physics (Seinäjoki University of Applied Sciences, School of Engineering)
Evaluation scale
1-5
Assessment criteria, satisfactory (1)
Satisfactory (1 ... 2): The student is able to make basic measurements in accordance with working instructions and work safely in the laboratory. The student is able to deal with measurement results and to present the results graphically using computer-aided tools. The student is able to assess the reliability of the measurements according to instructions. The student is able to present a short technical report of the results of the measurements.
Assessment criteria, good (3)
Good (3 ... 4): The student is able to make different types of measurements in accordance with work instructions and work independently in the laboratory. The student is able to deal with the measurement results, and present the results graphically using computer-aided tools. The student is able to assess the reliability of measurements using different types of error estimation methods. The student is able to present the results in a logical and clear technical report.
Assessment criteria, excellent (5)
Excellent (5): The student works independently in the laboratory, and is able to make measurements based on instructions and develop the measurement methods. The student is able to evaluate the results using a wide range of computer-assisted tools, make reliable error estimates and draw conclusions from the results and error estimates. The student is able to present the results and conclusions in a logical and clear technical report.
Qualifications
Mechanics and Electrical and thermal physics or similar knowledge and skills
Enrollment
13.11.2023 - 21.02.2024
Timing
04.03.2024 - 28.04.2024
Credits
3 op
Teaching languages
- Finnish
Degree programmes
- Bachelor of Engineering, Mechanical Engineering
Teachers
- Tommi Ylimäki
Scheduling groups
- Pienryhmä 1 (Size: 0. Open UAS: 0.)
- Pienryhmä 2 (Size: 0. Open UAS: 0.)
Student groups
-
AUTO22
Education groups
- Small group 1
- Small group 2
Objective
Upon completion of the course, student will
- be able to use the common tools and methods used in the research of technology
- be able to identify restrictions of the basic experimental research tools
- become familiar with the experimental data acquisition and are able to make controlled measurements
- be able to process results and to evaluate measurement methods and reliability of the results
- be able to analyze results with computer-assisted mathematical tools
- be able to form a scientific report based on the received measurements and their analysis by using a word processing program
- be able to build the relationship between theoretical knowledge and practical knowledge of physics
- be able to evaluate his/her skills and apply his/her expertise in the subsequent advanced studies and real problems at work
Content
Laboratory experiments from different areas of physics and engieering.
Materials
Guidelines for laboratory assignments
Books for physics in university of applied sciences
Teaching methods
Laboratory assignments and reports
Student workload
To be announced in the beginning of laboratory works
Evaluation scale
1-5
Assessment criteria, satisfactory (1)
Satisfactory (1 ... 2): The student is able to make basic measurements in accordance with working instructions and work safely in the laboratory. The student is able to deal with measurement results and to present the results graphically using computer-aided tools. The student is able to assess the reliability of the measurements according to instructions. The student is able to present a short technical report of the results of the measurements.
Assessment criteria, good (3)
Good (3 ... 4): The student is able to make different types of measurements in accordance with work instructions and work independently in the laboratory. The student is able to deal with the measurement results, and present the results graphically using computer-aided tools. The student is able to assess the reliability of measurements using different types of error estimation methods. The student is able to present the results in a logical and clear technical report.
Assessment criteria, excellent (5)
Excellent (5): The student works independently in the laboratory, and is able to make measurements based on instructions and develop the measurement methods. The student is able to evaluate the results using a wide range of computer-assisted tools, make reliable error estimates and draw conclusions from the results and error estimates. The student is able to present the results and conclusions in a logical and clear technical report.
Assessment methods and criteria
Reports and exercices
Qualifications
Mechanics and Electrical and thermal physics or similar knowledge and skills
Enrollment
13.11.2023 - 15.01.2024
Timing
08.01.2024 - 25.02.2024
Credits
3 op
Teaching languages
- Finnish
Degree programmes
- Bachelor of Engineering, Mechanical Engineering
Teachers
- Pekka Sahimaa
Scheduling groups
- Pienryhmä 1 (Size: 0. Open UAS: 0.)
- Pienryhmä 2 (Size: 0. Open UAS: 0.)
Student groups
-
KONE22
Education groups
- Small group 1
- Small group 2
Objective
Upon completion of the course, student will
- be able to use the common tools and methods used in the research of technology
- be able to identify restrictions of the basic experimental research tools
- become familiar with the experimental data acquisition and are able to make controlled measurements
- be able to process results and to evaluate measurement methods and reliability of the results
- be able to analyze results with computer-assisted mathematical tools
- be able to form a scientific report based on the received measurements and their analysis by using a word processing program
- be able to build the relationship between theoretical knowledge and practical knowledge of physics
- be able to evaluate his/her skills and apply his/her expertise in the subsequent advanced studies and real problems at work
Content
Laboratory experiments from different areas of physics and engieering.
Materials
Guidelines for laboratory assignments
Teaching methods
Laboratory assignments and reports
Student workload
To be announced in the beginning of laboratory works
Evaluation scale
1-5
Assessment criteria, satisfactory (1)
Satisfactory (1 ... 2): The student is able to make basic measurements in accordance with working instructions and work safely in the laboratory. The student is able to deal with measurement results and to present the results graphically using computer-aided tools. The student is able to assess the reliability of the measurements according to instructions. The student is able to present a short technical report of the results of the measurements.
Assessment criteria, good (3)
Good (3 ... 4): The student is able to make different types of measurements in accordance with work instructions and work independently in the laboratory. The student is able to deal with the measurement results, and present the results graphically using computer-aided tools. The student is able to assess the reliability of measurements using different types of error estimation methods. The student is able to present the results in a logical and clear technical report.
Assessment criteria, excellent (5)
Excellent (5): The student works independently in the laboratory, and is able to make measurements based on instructions and develop the measurement methods. The student is able to evaluate the results using a wide range of computer-assisted tools, make reliable error estimates and draw conclusions from the results and error estimates. The student is able to present the results and conclusions in a logical and clear technical report.
Assessment methods and criteria
Reports and exam
Qualifications
Mechanics and Electrical and thermal physics or similar knowledge and skills
Enrollment
17.04.2023 - 06.09.2023
Timing
21.08.2023 - 05.11.2023
Credits
3 op
Teaching languages
- Finnish
Degree programmes
- Bachelor of Engineering, Mechanical Engineering
Teachers
- Pekka Sahimaa
Student groups
-
MKONE21
Objective
Upon completion of the course, student will
- be able to use the common tools and methods used in the research of technology
- be able to identify restrictions of the basic experimental research tools
- become familiar with the experimental data acquisition and are able to make controlled measurements
- be able to process results and to evaluate measurement methods and reliability of the results
- be able to analyze results with computer-assisted mathematical tools
- be able to form a scientific report based on the received measurements and their analysis by using a word processing program
- be able to build the relationship between theoretical knowledge and practical knowledge of physics
- be able to evaluate his/her skills and apply his/her expertise in the subsequent advanced studies and real problems at work
Content
Laboratory experiments from different areas of physics and engieering.
Materials
Guidelines for laboratory assignments
Teaching methods
Laboratory assignments and reports
Student workload
To be announced in the beginning of laboratory works
Evaluation scale
1-5
Assessment criteria, satisfactory (1)
Satisfactory (1 ... 2): The student is able to make basic measurements in accordance with working instructions and work safely in the laboratory. The student is able to deal with measurement results and to present the results graphically using computer-aided tools. The student is able to assess the reliability of the measurements according to instructions. The student is able to present a short technical report of the results of the measurements.
Assessment criteria, good (3)
Good (3 ... 4): The student is able to make different types of measurements in accordance with work instructions and work independently in the laboratory. The student is able to deal with the measurement results, and present the results graphically using computer-aided tools. The student is able to assess the reliability of measurements using different types of error estimation methods. The student is able to present the results in a logical and clear technical report.
Assessment criteria, excellent (5)
Excellent (5): The student works independently in the laboratory, and is able to make measurements based on instructions and develop the measurement methods. The student is able to evaluate the results using a wide range of computer-assisted tools, make reliable error estimates and draw conclusions from the results and error estimates. The student is able to present the results and conclusions in a logical and clear technical report.
Assessment methods and criteria
Reports and exam
Qualifications
Mechanics and Electrical and thermal physics or similar knowledge and skills
Enrollment
14.11.2022 - 22.02.2023
Timing
06.03.2023 - 30.04.2023
Credits
3 op
Teaching languages
- Finnish
Degree programmes
- Bachelor of Engineering, Mechanical Engineering
Teachers
- Jarno Arkko
Scheduling groups
- Pienryhmä 1 (Size: 0. Open UAS: 0.)
- Pienryhmä 2 (Size: 0. Open UAS: 0.)
Student groups
-
AUTO21
Education groups
- Pienryhmä 1
- Pienryhmä 2
Objective
Upon completion of the course, student will
- be able to use the common tools and methods used in the research of technology
- be able to identify restrictions of the basic experimental research tools
- become familiar with the experimental data acquisition and are able to make controlled measurements
- be able to process results and to evaluate measurement methods and reliability of the results
- be able to analyze results with computer-assisted mathematical tools
- be able to form a scientific report based on the received measurements and their analysis by using a word processing program
- be able to build the relationship between theoretical knowledge and practical knowledge of physics
- be able to evaluate his/her skills and apply his/her expertise in the subsequent advanced studies and real problems at work
Content
Laboratory experiments from different areas of physics and engieering.
Materials
Guidelines for laboratory assignments
Books for physics in university of applied sciences
Teaching methods
Laboratory assignments and reports
Student workload
To be announced in the beginning of laboratory works
Evaluation scale
1-5
Assessment criteria, satisfactory (1)
Satisfactory (1 ... 2): The student is able to make basic measurements in accordance with working instructions and work safely in the laboratory. The student is able to deal with measurement results and to present the results graphically using computer-aided tools. The student is able to assess the reliability of the measurements according to instructions. The student is able to present a short technical report of the results of the measurements.
Assessment criteria, good (3)
Good (3 ... 4): The student is able to make different types of measurements in accordance with work instructions and work independently in the laboratory. The student is able to deal with the measurement results, and present the results graphically using computer-aided tools. The student is able to assess the reliability of measurements using different types of error estimation methods. The student is able to present the results in a logical and clear technical report.
Assessment criteria, excellent (5)
Excellent (5): The student works independently in the laboratory, and is able to make measurements based on instructions and develop the measurement methods. The student is able to evaluate the results using a wide range of computer-assisted tools, make reliable error estimates and draw conclusions from the results and error estimates. The student is able to present the results and conclusions in a logical and clear technical report.
Assessment methods and criteria
Reports and exercices
Qualifications
Mechanics and Electrical and thermal physics or similar knowledge and skills
Enrollment
14.11.2022 - 15.01.2023
Timing
09.01.2023 - 26.02.2023
Credits
3 op
Teaching languages
- Finnish
Degree programmes
- Bachelor of Engineering, Mechanical Engineering
Teachers
- Pekka Sahimaa
Scheduling groups
- Pienryhmä 1 (Size: 0. Open UAS: 0.)
- Pienryhmä 2 (Size: 0. Open UAS: 0.)
Student groups
-
KONE21
Education groups
- Pienryhmä 1
- Pienryhmä 2
Objective
Upon completion of the course, student will
- be able to use the common tools and methods used in the research of technology
- be able to identify restrictions of the basic experimental research tools
- become familiar with the experimental data acquisition and are able to make controlled measurements
- be able to process results and to evaluate measurement methods and reliability of the results
- be able to analyze results with computer-assisted mathematical tools
- be able to form a scientific report based on the received measurements and their analysis by using a word processing program
- be able to build the relationship between theoretical knowledge and practical knowledge of physics
- be able to evaluate his/her skills and apply his/her expertise in the subsequent advanced studies and real problems at work
Content
Laboratory experiments from different areas of physics and engieering.
Materials
Guidelines for laboratory assignments
Teaching methods
Laboratory assignments and reports
Student workload
To be announced in the beginning of laboratory works
Evaluation scale
1-5
Assessment criteria, satisfactory (1)
Satisfactory (1 ... 2): The student is able to make basic measurements in accordance with working instructions and work safely in the laboratory. The student is able to deal with measurement results and to present the results graphically using computer-aided tools. The student is able to assess the reliability of the measurements according to instructions. The student is able to present a short technical report of the results of the measurements.
Assessment criteria, good (3)
Good (3 ... 4): The student is able to make different types of measurements in accordance with work instructions and work independently in the laboratory. The student is able to deal with the measurement results, and present the results graphically using computer-aided tools. The student is able to assess the reliability of measurements using different types of error estimation methods. The student is able to present the results in a logical and clear technical report.
Assessment criteria, excellent (5)
Excellent (5): The student works independently in the laboratory, and is able to make measurements based on instructions and develop the measurement methods. The student is able to evaluate the results using a wide range of computer-assisted tools, make reliable error estimates and draw conclusions from the results and error estimates. The student is able to present the results and conclusions in a logical and clear technical report.
Assessment methods and criteria
Reports and exam
Qualifications
Mechanics and Electrical and thermal physics or similar knowledge and skills