Siirry suoraan sisältöön

Lujuusoppi 2 (3op)

Opintojakson tunnus: KC00CC35

Opintojakson perustiedot


Laajuus
3 op
Opetuskieli
suomi

Osaamistavoitteet

Opintojakson suoritettuaan opiskelija osaa:
- selittää moniakselisen jännitys- ja muodonmuutostilan periaatteet lineaarisessa kimmoteoriassa
- käyttää jännitys- ja muodonmuutostilojen välistä yhteyttä
- laskea jännityksiä ja muodonmuutoksia lineaarisen kimmoteorian malleilla
- soveltaa lujuushypoteeseja mitoitus- ja tarkastelutehtävissä
- selittää väsymisen perusperiaatteet ja ratkaista yksinkertaisia väsymislujuuden laskentatehtäviä S–N -menetelmän ja Haigh-diagrammin perusteella
- ratkaista perusmuotoisia koneenosien lujuus- ja väsymistehtäviä osana koneensuunnittelun kokonaisuutta

Sisältö

- Moniakselinen jännitystila
- Moniakselinen muodonmuutostila
- Jännitys- ja muodonmuutostilojen välinen yhteys (Hooken laki yleisessä muodossa)
- Lujuushypoteesit (von Mises)
- Väsymisilmiöt ja S–N -käyrät
- Yksinkertaiset väsymislujuuden laskentamenetelmät (Goodman, Haigh)
- Koneenosien perusmitoitustehtävät lineaarisen kimmoteorian perusteella

Esitietovaatimukset

Statiikka
Lujuusoppi 1 tai vastaavat tiedot ja taidot

Arviointikriteerit, tyydyttävä (1)

Opiskelija tunnistaa moniakselisen jännitys- ja muodonmuutostilan peruskäsitteet, käyttää lineaarisen kimmoteorian peruskaavoja ja ratkaisee yksinkertaisia peruslaskutehtäviä ohjatusti.

Arviointikriteerit, hyvä (3)

Opiskelija selittää jännitys–muodonmuutosyhteyden, soveltaa von Mises -hypoteesia ja ratkaisee yleisiä lujuus- ja väsymislujuustehtäviä itsenäisesti myös Haigh-diagrammia hyödyntäen.

Arviointikriteerit, kiitettävä (5)

Opiskelija analysoi moniakselisia jännitystiloja, valitsee ja perustelee von Mises -hypoteesin käytön sekä ratkaisee vaativampia lujuus- ja väsymistehtäviä käyttäen S–N -menetelmää ja Haigh-diagrammia.

Oppimateriaalit

- Karhunen ym.: Lujuusoppi
- Parnes: Solid mechanics in engineering
- luentomateriaali

Siirry alkuun