Skip to main content

Robotics (4 cr)

Code: KC00CC75-3002

General information


Enrollment

16.04.2022 - 12.10.2022

Timing

03.10.2022 - 22.01.2023

Credits

4 op

Teaching languages

  • Finnish

Degree programmes

  • Bachelor of Engineering, Mechanical Engineering

Teachers

  • Jarkko Pakkanen

Student groups

  • MKONE19

Objective

Upon completion of the course, students will:
- be knowledgeable of various types of robots
- will be capable of inspecting robots and know how to use robots in factory automation and other areas where robotics are used.
- understand the structure, properties, co-ordinates of robots, as well as the peripheral devices used in robots.
- be competent in handling and programming industrial robots using online and offline methods of programming.
- be competent in designing and selecting robots and peripheral devices for the automatic handling of products.

Content

- Types of robots
- Mechanical structure of industrial robots
- Control systems, properties, coordinates and peripheral devices
- Handling an ABB-, Fanuc- and Yaskawa industrial robots, online and offline programming
- Features of collaborative robotics and programming of Universal Robots collaborative robots
- Mobile robotics applications and programming with Omron mobile robot
- Application of sensor technology and artificial intelligence in robotics. Application of machine vision in robotics.

Materials

- Lecturer's material
- Demonstrations during lectures
- Assignments
- Product and programming manuals from importers
- Kuivanen R. Robotiikka. Suomen Robottiyhdistys Ry

Teaching methods

Lectures, robot programming exercises in simulaltion environment, laboratory assignments with ABB, Fanuc, Yaskawa, Omron (mobile) and Universal robots.

Student workload

A total of 100 hours studying, which includes 16 hours of classroom education and 12 hours of laboratory assignments.

Evaluation scale

1-5

Assessment criteria, satisfactory (1)

Satisfactory (1...2): The student knows and understands to a basic concepts in robotics. The student is able to program simple movement command to ABB robot.

Assessment criteria, good (3)

Good (3...4): The student knows and understands to a basic concepts in robotics. The student is able to program simple movement command to ABB robot. The student is able to combine the accumulated knowledge in basic laboratory exercises.

Assessment criteria, excellent (5)

Excellent (5): The student knows and understands to a basic concepts in robotics. The student is able to program ABB and Motoman robots by using On- and Off-line programming methods.

Assessment methods and criteria

Written examination (50%) and robot programming examination (50%).
The course grade scales between 1-5.

Assessment criteria, good (3)

The student has completed the assignments/sections assigned approvingly. The student knows and mastered to a satisfactory degree the basic concepts and methods associated with the subject.

Assessment criteria, excellent (5)

The student has completed the assignments/sections and actively participated in the course. Students are familiar with the basic concepts and methods involved and are able to apply them when solving normal questions. He/She is able to combine what he/she has learned with his previous experience in the subject matter.

Assessment criteria, approved/failed

The student has completed the assignments/sections and actively participated in the course. Students are familiar with the basic concepts and methods involved and are able to apply them when solving normal questions. He/She has demonstrated the ability to create new meanings and ideas within the framework of the subject, applying what he/she has previously learned.

Qualifications

No previous studies are required.