Stability of Structures (4cr)
Course unit code: RAK2C4
General information
- Credits
- 4 cr
Objective
Students will be able to apply stability theory in structural analysis. Students will be able to determinate buckling load for different bar structures. Students will be able to use slope-deflection and finite element methods in stability problems. Students will be able to recognize meaning of phenomena like torsional- and flexural torsional buckling for column structures and lateral torsional buckling for beam structures. Students knows a plate buckling phenomenon.
Content
- Second order approach
- Euler's buckling cases
- Beam-column
- Second order moment
- Effect of imperfection
- Eigenvalue problem
- Slope-deflection method in stability problems
- Finite element method in stability problems
- Torsional- and flexural torsional buckling
- Lateral torsional buckling
- Plate buckling
Qualifications
Statics, Strength of Materials, Basics of FEM, Linear Algebra,
Differential and Integral Calculus.
Assessment criteria, satisfactory (1)
The student is able to determine the buckling load of a simple bar structure.
Assessment criteria, good (3)
The student is able to apply the finite element method of bar structures to determine the critical load of different bar structures.
Assessment criteria, excellent (5)
The student is able to apply very well the finite element method of bar structures to determine the critical load of different bar structures.
Materials
S.P. Timoshenko, J.M. Gere: Theory of Elastic Stability. Dover.
Lecturer's material.