CURRICULA > FULL-TIME, DAYTIME STUDIES > DEGREE PROGRAMME IN MECHANICAL ENGINEERING

Degree Programme in Mechanical Engineering
Bachelor of Engineering, 240 ECTS


Bachelor of Engineering

  • Programme
  • Curricula
  • Implementations

Name of the Degree Programme

Degree Programme in Mechanical Engineering

Specialisations

- Automotive and Work Machine Engineering
- Mechanical and Production Engineering

Qualification awarded

Bachelor of Engineering

Level of qualification

The degree programme leads to a higher education degree which is a first cycle Bachelor-level degree in the European Higher Education Area (EHEA). According to the eight-level classification of the European Qualifications Framework (EQF) and National Qualifications Framework (NQF), the degree represents level 6.

The description of the level of the Degree is included in the Statute, at
http://www.finlex.fi/fi/laki/alkup/2017/20170120

Specific admission requirements

Eligibility for studies at a university of applied sciences is stipulated in the Universities of Applied Sciences Act 932/2014.
The selection criteria are specified in the data of the Degree Programme at www.opintopolku.fi and www.seamk.fi/haku

On the websites, application and instructions are in Finnish language for the degree programmes taught in Finnish.

Specific arrangements for recognition of prior learning (RPL)

The RPL procedure means the identification and recognition of the student’s previously acquired learning. The student has the opportunity to apply for the recognition of their competencies if the competencies correspond to the learning goals of the Degree Programme. The identification process is closely connected with the preparation of the student’s personal curriculum and is updated during personal counselling discussions.

The identification and recognition practices are presented in the RPL Instruction of SeAMK. It specifies how recognition of competencies is applied for, how the application is processed, and how the student is informed of it. The instruction lists the RPL contact persons of each Degree Programme, who counsel students on matters related to the process.

In the assessment of prior learning, for example the following evidence is used:

- certificates on training programmes with similar content and other training programmes
- testimonials and further clarifications by an employer
- interviews of the student
- written and oral exams or reports
- functional or written assignments or other evidence
- presentations, portfolios

The Project studies and the final project/thesis and the Maturity Test cannot be submitted to the RPL procedure.

The Head of Degree Programme, Student Counsellor, and when necessary, the teacher of the course in question are responsible for RPL. Their task is to inform students of the recognition and assessment process, to discuss students' Personal Study Plan and to guide students in the demonstration of prior learning.

According to the degree regulation, prior learning of a subject expires in ten years.

Assessment is course-specific, defined by the teacher in question. Assessment methods are an exam (written or oral), practical work, a laboratory test, a field test or equivalent.

Qualification requirements and regulations (incl. graduation requirements)

Please see the Degree Regulations of Seinäjoki University of Applied Sciences.

Pedagogical approach and learning environment

The working world and expertise demand that employees have advanced skills in information acquisition and processing and problem-solving, the ability to collaborate with others and to always be open to new learning situations, as well as the ability to combine various types of information and various disciplines with practical work. This means that students must understand what they are taught. For this reason, teaching in the engineering programme emphasises the constructivist theory of learning where the students' active role and world of experience form a significant part of the education. It is the teacher's duty to facilitate learning and co-ordinate studies.

A variety of teaching methods are used in the programmes to support students' professional development, readiness for the working world and professional expertise. Students work in small groups, listen to lectures by experts, work in the laboratory, do assignments, work in projects and obtain practical experience in real work environments.

Profile of the programme

Specialisation in Automotive and Work Machine Engineering:

The purpose of this line of specialisation is to produce automotive engineers who have basic skills in mechanical engineering and specialised expertise in automotive engineering. Students become familiar with machine design, structural engineering of automobiles, automotive electronics, mechanical engineering and entrepreneurship. Students acquire practical experience, on the level of both the employee and that of the engineer, during their practical training and Project Studies.

There is a wide and diverse range of jobs automotive engineers can perform. Typical jobs include designing, production, management, marketing and sales, or working as an independent entrepreneur. Places of employment may include the automotive industry, engineering industry, and the fields of insurance and inspection.

The automotive industry is one of the fields of industry that has significantly changed the world. Changes have taken place since the time of Henry Ford and will continue to take place in the future. Even today, the automotive engineers are pioneers in technology and their expertise ensures the further development of technology and the preservation of the profession.

The automotive industry is one of the fields of industry that has significantly changed the world. Changes have taken place since the time of Henry Ford and will continue to take place in the future. Even today, the automotive engineers are pioneers in technology and their expertise ensures the further development of technology and the preservation of the profession.


Specialisation in Mechanical and Production Engineering:

The purpose of the Mechanical and Production Engineering programme is to produce mechanical engineers who have command of the production processes in the machine and metal industry and production management. Students graduating from this programme will have the readiness they need to work as specialists and supervisors in the machine and metal industry, from designing to production and from sales to marketing.

Emphasis in the programme is placed on production engineering, mechanical engineering and entrepreneurship. Students have the opportunity to acquire advanced skills in technical mechanics, materials design, or automation systems. Students acquire practical experience, on the level of both the employee and that of the engineer, during their practical training and Project Studies.

There is a wide and diverse range of jobs mechanical engineers can perform. Typical jobs include designing, production, management, marketing and sales, or working as an independent entrepreneur.

The employment prospects for mechanical engineers are good. Mechanical engineers are needed to develop and produce top products for a very wide range of clientele, not only in domestic markets but for exporting as well. As graduates in engineering, students have the opportunity to choose a job that interests them and to reinforce the success story created by Finnish engineers.

Occupational profiles

The automotive engineer's scope of duties is broad and diverse. Their duties typically involve designing, production, management, marketing and sales, or they may be self-employed. Places of employment may include the automotive industry, engineering industry, and the fields of insurance and inspection.

The mechanical engineers scope of duties is broad and diverse. Their duties typically involve designing, production, management, marketing and sales, or they may be self-employed. The employment prospects for mechanical engineers are good. Mechanical engineers are needed to develop and produce top products for a very wide range of clientele, not only in domestic markets but for exporting as well. As graduates in engineering, students have the opportunity to choose a job that interests them and to reinforce the success story created by Finnish engineers.
After completing the vocational language studies the student is able to communicate in spoken and written situations related to his field of study. He can search for information and follow the development of his professional field in the target language.

Internationalization

Important international affairs include student mobility, courses instructed in English and international week of SeAMK School of Technology.

Access to further studies

After three years of work experience, the student will be eligible for further studies for a Master’s Degree in the field in question.

Structure of the studies

In accordance with the Universities of Applied Sciences Act, the studies of a Degree Programme consist of basic studies, professional studies, practical training promoting professional skills, free elective studies, and a final project/thesis. The extent of the studies is 60 credits a year.

The programme includes 30 credits of supervised practical training in field-related companies. Students in both areas of specialisation participate in Project Studies, which are carried out together with a company. The studies involve Project Workshops where students engage in project work in small groups and the Projects course where students complete assignments independently (27 cr). Students also select 15 credits of elective courses and do a final thesis (15 cr). The degree programme has strong ties with European universities of applied sciences. This offers students the opportunity to study and do their practical training abroad.

The curriculum includes five seams permeating through the studies and extending over them. They are based on SeAMK’s reports, studies and strategy, as well as on the national and international recommendations and regulations related to education provided by universities of applied sciences.
- The Information Search seam strengthens the student’s professional and field-specific information search skills throughout the studies.
- The Internationalization seam secures the improvement of the student’s international competencies during their studies.
- The studies corresponding to the Entrepreneurship seam help the student understand the central and growing role of entrepreneurship in society.
- The Sustainable Development seam makes the student aware of social responsibility and helps them understand the diversity of sustainable development as a working life skill.
- The seam of Career Guidance helps the student recognise their competencies and own strengths. It also includes working life knowledge, job search skills, and lifelong learning.

Students have the opportunity to include multidisciplinary, working life-oriented project studies in their personal curricula (FramiPro).

Examination regulations, assessment and grading

Please see the Degree Regulations of Seinäjoki University of Applied Sciences.
Link

Graduation requirements

Please see the Degree Regulations of Seinäjoki University of Applied Sciences and instructions for graduates at Intra.

Mode of study

Young students study full-time in this programme. Students in adult education study part-time through a diverse range of teaching methods.

Head of degree programme

Mr Jukka Pajula, tel. +358 40 830 2396, e-mail: jukka.pajula(at)seamk.fi

Student counsellor

Mr Heikki Heiskanen, tel. +358 40 830 4269, e-mail: heikki.heiskanen(at)seamk.fi

Coordination of international mobility

Ms Tiina Välimäki, +358 40-830 4127, tiina.valimaki(at)seamk.fi.Outgoing student mobilities to Europe
Ms Maria Loukola, +358 40-830 2240, maria.loukola(at)seamk.fi.Incoming and outgoing mobilities outside Europe
Ms Tiina Ojanperä, +358 40 6807100, tiina.ojanpera(a)seamk.fi. Incoming student mobilities from Europe

Student services

Tel. +358 20 124 5055, studentservices@seamk.fi

Field of study

Engineering, manufacturing and construction
The classification of the educational field is based on the international ISCED classification used by the Ministry of Education and Culture.

Learning outcomes

Konetekniikan tutkinto-ohjelman osaamistavoitteet käyvät yksityiskohtaisesti ilmi tutkinto-ohjelman sisällön kuvauksesta sekä tutkinto-ohjelmakohtaisesta kompetenssikuvauksesta. (not translated)

Generic and subject specifc competences

Competencies are extensive knowledge entities, or combinations of the individual’s knowledge, skills, and attitudes. They describe qualifications, performance potential, and the ability to cope with professional duties.

Common/general competencies are fields of know-how common to different Degree Programmes, but their special characteristics and importance may vary between professions and work assignments. General competencies form the basis for professional activities, cooperation, and the development of expertise. According to Arene’s (Rectors' Conference of Finnish Universities of Applied Sciences) recommendations, general competencies include learning skills, ethical competence, cooperation skills, innovation skills, and internationalization skills. In addition to the above-mentioned competencies, entrepreneurial skills and quality management skills are emphasized in the degree studies of SeAMK as competencies common to all.

Degree programme-specific competencies form the basis for the development of the student’s professional expertise.

The competences in Automotive and Work Machine Engineering:

1 Basics of automotive engineering
- understands the laws of physics for automotive technology.
- knows the common chemicals and materials and how to use them.
- knows the methods for production technology.
- knows the basic structures, components and systems of automobiles.
- understands the dynamic behaviour of automobiles and ability to illustrate and simulate it mathematically.
- has knowledge of solid-state technology and the associated components.

2 Advanced competence in automotive technology
- knows the structures the chassis, frame, tyre, engine, and transmission in automobiles, and understanding of the significance of maintenance.
- understands the environmental impact of traffic.
- commands the essential electronic and data communications applications in automobiles.
- has knowledge of maintenance diagnostics.
- has knowledge of sensor technology and is able to reliably measure technical magnitudes.

3 Competence in legislation
- knows the essential legislation pertaining to the structure of automobiles, traffic and transportation.
- knows the rights and responsibilities of the employer and the employee.
- has knowledge of occupational safety and environmental protection.
- knows the rights and responsibilities of the consumer

4 Business and customer service competence
- knows the prerequisites for profitable business operations and understands the business idea behind automobile dealerships and transportation companies.
- understands the significance of customer service to the operations in a service-providing company.
- is able to communicate and work in international organisations.
- knows the principles of management and ability to function as a supervisor.

The competences in Mechanical and production engineering:

1 Basics of Mechanical engineering
- is able to utilise mathematics and physics to illustrate phenomena in mechanical engineering and to solve problems.
- knows the more common components and mechanical organs used in mechanical engineering, and understanding of how the more common types of machines work.
- commands basic mechanical measurements.
- has knowledge of energy technology and how to use it.

2 Competence in planning
- knows the principles of technical documentation and is able to utilise 3D modelling.
- knows of the more common structural materials and the ways they can be used.
- understands the significance of standardisation in the design and manufacturing of products.
- is able to consider the entire life cycle of a product when designing it.
- understands the significance of teamwork and is able to work as an active member of international designing organisations.

3 Competence in manufacturing
- knows the methods, devices and opportunities available in production engineering.
- understands the principles of production systems and automation and the impact of them on the structure of a product.
- knows the principles of logistics.

4 Competence in safety of machine
- knows the directives pertaining to mechanical design.
- is able to design safe and easy-to-use devices and structures.

5 Competence in company finances and business
- knows the directives pertaining to mechanical design.
- is able to design safe and easy-to-use devices and structures.

Work-based learning and work placements

The student’s salaried work during their studies and the competencies achieved through it can be used in order to complete a course. This is referred to as employment-integrated learning, and it can also be related to voluntary work or hobbies. It is essential that the things learnt through working contribute to the attainment of the learning goals of the course. Learning achieved through employment-integrated learning can be verified, for instance, through skills demonstrations and assignments.

Coordination of Practical Training

In the practical training period named persons will be responsible for the quiding of students. The head of degree progran has main responsibility